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This article presents the methodology we have developed for the simulation of hydrogen transfer reactions,
including multiple proton transfer and proton-coupled electron transfer reactions. The central method discussed
is molecular dynamics with quantum transitions (MDQT), which is a mixed quantum/classical surface hopping
method that incorporates nonadiabatic transitions between the proton vibrational and/or electronic states. The
advantages of MDQT are that it accurately describes branching processes (i.e., processes involving multiple
pathways), is valid in the adiabatic and nonadiabatic limits and the intermediate regime, and provides real-
time dynamical information. The multiconfigurational MDQT (MC-MDQT) method combines MDQT with
an MC-SCF formulation of the vibrational modes for the simulation of processes involving multiple quantum
modes (e.g., for multiple proton transfer reactions). MC-MDQT incorporates the significant correlation between
the quantum modes in a computationally practical way and has been applied to proton transport along water
chains. The EV-MDQT method incorporates transitions between mixed electronic/proton vibrational adiabatic
states, which are calculated in a way that removes the standard double adiabatic aproximation. EV-MDQT
has been applied to model proton-coupled electron transfer reactions. These new developments allow the
simulation of a wide range of biologically and chemically important hydrogen transfer processes.

I. Introduction

Hydrogen transfer reactions play a critical role in a variety
of important chemical and biological processes. Often the
hydrogen transfer reaction is coupled to other hydrogen transfer
reactions or to an electron transfer reaction. For example, a wide
range of enzymes, including serine proteases,1,2 alcohol dehy-
drogenases,3 and carbonic anhydrases,4 involve proton relay
systems, which are sequences of coupled proton transfer
reactions. Moreover, the coupling between proton motion and
electron transfer plays an important role in the conduction of
electrons through proteins such as cytochromec.5,6 The vital
processes of photosynthesis7-9 and respiration10-12 involve both
multiple proton transfer and proton-coupled electron transfer
(PCET) reactions. Our goal is to utilize computer simulation to
help elucidate the underlying fundamental principles of these
important processes.

The simulation of hydrogen transfer reactions requires a
potential energy surface that incorporates quantum mechanical
effects such as the formation and breaking of bonds and changes
in charge distribution. Standard molecular mechanical (MM)
potentials (i.e., standard parametrized analytical functional forms
such as those presented in refs 13 and 14) do not incorporate
these effects. These quantum mechanical effects can be incor-
porated into the potentials in several different ways. One
approach is to include parametrized terms of suitable analytical
forms that are fit to ab initio calculations.15,16A second approach
is the Car-Parrinello method,17 where a partial electronic
structure calculation (typically based on density functional
theory) of the entire system is performed at each molecular
dynamics time step. A third approach is to combine quantum
mechanical and molecular mechanical methods (the QM/MM
methods), where reacting portions of the system are treated
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quantum mechanically (using either ab initio or semiempirical
electronic structure methods), while the remaining portions of
the system are treated with standard MM potentials.18-22 Thus,
a broad spectrum of methods for obtaining potential energy
surfaces for hydrogen transfer reactions is available.

Although the development of these types of potential energy
surfaces is an important area of research, this article will focus
on thedynamicalaspects of hydrogen transfer reactions. Since
the light mass of the transferring hydrogen atom(s) leads to
quantum dynamical effects such as hydrogen tunneling, standard
molecular dynamics simulations, in which all of the nuclei move
classically, are inadequate for the simulation of hydrogen
transfer reactions. Quantum dynamical effects such as hydrogen
tunneling can be incorporated with mixed quantum/classical
molecular dynamics methods, in which one or a few nuclei are
treated quantum mechanically while the remaining nuclei are
treated classically. For hydrogen transfer reactions typically the
transferring hydrogen atom(s) are treated quantum mechanically,
while the remaining atoms (i.e., the donor, acceptor, solvent,
and/or protein) are treated classically. A number of mixed
quantum/classical simulations have been developed and applied
to proton transfer reactions in solution and in enzymes.23-47 The
various methods differ in the treatment of the interactions
between the quantum and classical subsystems.

Figures 1 and 2 illustrate the fundamental dynamical issues
involved in the simulation of hydrogen transfer reactions. Figure
1 depicts a schematic picture of a branching process for a single
one-dimensional proton transfer reaction in solution. Each
double well potential curve represents the potential in which
the hydrogen atom moves for a particular solvent configuration.
The shape of this double well potential changes as the solvent
fluctuates, as indicated by the arrows. The lowest two adiabatic

proton vibrational quantum states are shown for each curve,
and the occupied adiabatic state is indicated with a solid line.
If the system starts out in the ground state localized in the
reactant well (configuration L1) and the solvent fluctuates so
that the product well becomes lower in energy, then two possible
pathways can be followed. The first is the adiabatic pathway,
where the system remains in the ground state and the proton
ends up localized in the product well (configuration R1). The
second is the nonadiabatic pathway, where the system switches
to the excited adiabatic state and thus the proton ends up
localized in the reactant well (configuration R2). Figure 2 depicts
the lowest two adiabatic potential energy surfaces as a function
of a collective solvent mode for this branching process. These
surfaces correspond to the energies of the two lowest adiabatic
states for the double well potential curves shown in Figure 1
for different classical configurations. The branching process in
Figure 1 corresponds to starting on the ground state in the L1
configuration, passing through the region of strong nonadiabatic
coupling (the symmetric configuration), and following the
adiabatic or the nonadiabatic pathway, ending up in either the

Figure 1. Schematic illustration of a branching process for a single
proton transfer reaction. Each double well potential curve represents
the potential in which the hydrogen atom moves for a particular classical
configuration. The lowest two adiabatic proton quantum states are
shown for each potential curve, and the occupied adiabatic state is
indicated with a solid line. The potential curves are labeled using the
following notation: L indicates that the left well is lower than the right
well, and R indicates that the right well is lower than the left well. 1
indicates that the lowest energy adiabatic state is occupied, and 2
indicates that the second lowest energy adiabatic state is occupied. Thus
L1 indicates that the left well is lower and the lowest energy adiabatic
state is occupied. The pathways are labeled with an A for adiabatic
and an N for nonadiabatic.

Figure 2. Schematic illustration of the two lowest energy adiabatic
potential surfaces for a single proton transfer reaction as a function of
the collective solvent mode, where the relevant configurations are
labeled with the notation of Figure 1. (a) Schematic picture of a fully
quantum mechanical wave packet calculation, where the solvent mode
is represented initially as a single wave packet (shown on the left) that
branches into two separate wave packets (shown on the right) when it
passes through the region of strong nonadiabatic coupling. (b) Schematic
picture of the trajectory resulting from an adiabatic calculation, where
the trajectory remains on a single adiabatic surface. (c) Schematic
picture of the trajectory resulting from a mean field calculation, where
the trajectory follows an average path and ends up in a mixture of the
two adiabatic states. (d) Schematic picture of two possible trajectories
from an MDQT calculation, where each trajectory follows a single
pathway and ends up on either the ground state (shown on the left) or
the excited state (shown on the right) after passing through the region
of strong nonadiabatic coupling.
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R1 or the R2 configuration, respectively. (Note that the
nonadiabatic pathway requires a switch to the excited adiabatic
potential energy surface.) Figure 2a illustrates a fully quantum
mechanical calculation, where the solvent mode is represented
initially as a single wave packet (shown on the left) that branches
into two separate wave packets (shown on the right) when it
passes through the region of strong nonadiabatic coupling. Note
that the two separate wave packets move independently (i.e.,
are uncoupled) when they are far from the region of strong
nonadiabatic coupling.

When the solvent mode is treated classically, the fundamental
issue that arises is how the classical subsystem should evolve
on these potential energy surfaces (i.e., the feedback from the
quantum subsystem to the classical subsystem). In the standard
adiabatic method,27-29 the classical subsystem moves on a
single adiabatic surface (typically the ground state) and thus
always follows the adiabatic pathway, as shown in Figure 2b.
This method is valid in the adiabatic limit (i.e., when the barrier
is low) but will fail when there is a significant probability of
following the nonadiabatic pathway. Similarly, perturbative
methods have been developed for simulating proton transfer
reactions in the nonadiabatic limit (i.e., when the barrier is
high).30 Since the barrier height for proton transfer depends on
the distance between the donor and acceptor, which are typically
vibrating, a single proton transfer reaction can span the adiabatic
and nonadiabatic limits. Thus, although the adiabatic and
nonadiabatic methods are extremely useful for certain systems,
a more general method that can describe processes in both the
adiabatic and nonadiabatic limits and the intermediate regime
is desirable.

In the mean field methods,47 the classical subsystem follows
an average path derived from a mixture of adiabatic states (as
shown in Figure 2c). These methods are useful in the adiabatic
and nonadiabatic limits or when the adiabatic states exert similar
forces on the classical subsystem. For many proton transfer
reactions, however, the two states are of very different character
(i.e., one ionic and one covalent) and thus exert different forces
on the classical subsystem. In this case the mean field method
does not generate the correct dynamics after passage through
the region of strong nonadiabatic coupling if the classical
subsystem moves according to a mixture of adiabatic states.48

The surface hopping methods49-72 were designed to accu-
rately describe these types of branching processes. In surface
hopping, an ensemble of trajectories is propagated, and each
trajectory moves classically on a single surface except for
instantaneous transitions among the quantum states. Several
different surface hopping algorithms have been developed, and
these methods differ mainly in how the state switches are in-
corporated. In the molecular dynamics with quantum transitions
(MDQT) surface hopping method,23,63 these transitions are in-
corporated according to a probabilistic algorithm that ensures
that the correct fraction of trajectories follows each pathway
(as determined from the quantum probabilities derived from the
time-dependent Schro¨dinger equation). Figure 2d illustrates two
possible surface hopping trajectories, and an ensemble of such
trajectories should resemble the wave packet dynamics shown
in Figure 2a.

An alternative type of mixed quantum/classical molecular
dynamics method is based on the Feynman path integral for-
malism.37,38Although path integral methods are extremely use-
ful for calculating equilibrium properties, typically they employ
a transition state theory approximation rather than directly
predict real-time dynamical properties. Recently, however, much
effort has been devoted to the development of path integral

methods capable of calculating dynamical quantities.73-77 One
notable dynamical method of this type that has been applied to
proton transfer reactions is the centroid molecular dynamics
method.45,74-77 Although these methods are very promising, they
will not be discussed further here.

This article will describe the formulation of surface hopping
for hydrogen transfer reactions and will present the methodology
we have developed to address the additional challenges that arise
for multiple proton transfer reactions and for proton-coupled
electron transfer reactions. The first additional challenge that
arises for these types of reactions is that the branching processes
become more complicated, and the adiabatic potential surfaces
involve many different regions of strong nonadiabatic coupling.
The presence of multiple avoided curve crossings leads to
quantum interference effects. We have shown that the phase-
coherent surface hopping methods accurately describe these
quantum interference effects.78 The second additional challenge
that arises is that the calculation of the adiabatic states becomes
more difficult. For the case of multiple proton transfer reactions,
the significant correlation between the transferring protons must
be incorporated in a computationally practical manner. We have
addressed this challenge by developing the multiconfigurational
MDQT (MC-MDQT) method, which combines MDQT with a
multiconfigurational self-consistent-field (MC-SCF) approach
for vibrational modes.79,80 For the case of proton-coupled
electron transfer reactions, the adiabatic states are mixed
electronic/proton vibrational states, and typically the standard
double adiabatic approximation is not valid. To address this
challenge, we developed the EV-MDQT method, which is based
on a formulation for the calculation of mixed electronic/proton
vibrational states that removes the standard double adiabatic
approximation.81

An outline of this article is as follows. Section II describes
the fundamental aspects of the application of surface hopping
to hydrogen transfer reactions, including a method for simulating
infrequent events for processes evolving on multiple potential
energy surfaces. Section III presents the MC-MDQT method
for mixed quantum/classical simulation of multiple quantum
modes (e.g., multiple proton transfer reactions), and section IV
presents the EV-MDQT method for processes involving nona-
diabatic transitions among both proton vibrational and electronic
states (e.g., proton-coupled electron transfer reactions). Conclud-
ing remarks are contained in section V.

II. Fundamental Aspects of Mixed Quantum/Classical
Methods

Consider a general system consisting ofNc slow degrees of
freedom (with massesMI and coordinatesRI) andNq fast degrees
of freedom (with massesmi and coordinatesr i). The total
Hamiltonian is

where

(Here R and r are vectors of dimension 3Nc and 3Nq,
respectively.) To separate the fast and slow coordinates, choose
a set ofL orthonormal basis functions{Φn(r ;R)} for the fast
coordinatesr . Note that these basis functions depend para-

Htot ) - ∑
I)1

Nc p2

2MI

∇RI

2 + Hq(r ,R) (1)

Hq(r ,R) ) - ∑
i)1

Nq p2

2mi

∇ r i

2 + V(r ,R) (2)
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metrically on the slow coordinatesR. For simplicity in this
article the basis functionsΦn(r ;R) are assumed to be real. The
total wave functionΨ(r ,R,t) can be expanded in terms of these
basis functions with time-dependent coefficientsøn(R,t):

Substituting this into the time-dependent Schro¨dinger equation
leads to the following set of coupled equations for the wave
functionsøn(R,t):

whereø̃ is anL -dimensional vector with elementsøn(R,t) and
H̃ is anL × L matrix with elements

and

Note that the brackets indicate integration over only the fast
coordinatesr . In the diabatic representationDij ) Gij ) 0 for
all i, j, so the propagation of eq 4 requires the calculation of
only Vij. In the adiabatic representation

soVij ) εiδij and, in general,Dij * 0 andGij * 0. Thus, in the
adiabatic representationεi, Dij, andGij must all be evaluated.

Often the diabatic representation is used for wave packet
propagation on multiple surfaces.82,83 For mixed quantum/
classical simulations, however, the adiabatic representation is
more convenient because the complete potential surfaces are
not available, so the adiabatic basis functionsΦn(r ; R) and
eigenenergies are obtained locally “on the fly” during the
simulation. In other words, for each classical configuration
sampled during the molecular dynamics simulation, the adiabatic
basis functions and eigenenergies can be obtained by the
numerical solution of the time-independent Schro¨dinger equa-
tion. As mentioned above, the adiabatic representation requires
the calculation ofDij andGij for the fully quantum wave packet
calculations. Reference 84 shows that the calculation of both
the Dij and theGij terms does not involve the calculation of
derivatives of the basis functionsΦn but rather involves only
the derivatives of the HamiltonianHq. Thus, these terms are
straightforward to evaluate “on the fly”. Note that eq 4 is exact
for a complete basis set and can be propagated using standard
numerical methods85 for a small number of degrees of freedom.

For systems with more than a few slow degrees of freedom,
however, the exact solution of eq 4 is computationally intrac-
table. Thus mixed quantum/classical molecular dynamics meth-

ods, where the slow degrees of freedomR are treated classically
and the fast degrees of freedomr are treated quantum mechani-
cally, must be developed. In these methods the classical
subsystem moves according to the standard equations of motion

where the effective potentialVeff(R) differs for the various
methods. The HamiltonianHq(r ,R(t)) becomes time-dependent
through the classical trajectoryR(t). The time-dependent wave
function Ψ(r ,R,t) describing the quantum mechanical state at
time t is expanded in terms of the instantaneousL orthonormal
adiabatic basis functionsΦj(r ; R):

where Cj(t) are complex-valued expansion coefficients (i.e.,
quantum amplitudes). Note that the adiabatic statesΦj(r ; R)
are also time-dependent through the classical trajectoryR(t).
Substituting eq 12 into the time-dependent Schro¨dinger equation
leads to

whereVkj is defined in eq 7 and the nonadiabatic coupling vector
dkj(R) is defined as

for j * k anddkk ) 0. Note that the nonadiabatic coupling vector
dkj(R) corresponds to theDij terms in eq 5, but the corresponding
second derivativeGij terms in eq 5 are rigorously absent in this
formulation because the coefficientsCj(t) depend only on time
and not on the classical coordinatesR. In density matrix notation
the density matrix elements are defined asakj ≡ CkCj*, where
the diagonal density matrix elementsakk are the occupation
probabilities of the adiabatic states and the off-diagonal elements
akj describe the coherence. In practice, eq 13 is integrated
numerically, simultaneously with the integration of the classical
trajectoryR(t), to obtain the amplitudesCj(t) of each included
quantum mechanical state.

As mentioned above, the various mixed quantum/classical
methods differ in the definition of the effective potential
Veff(R) for the classical subsystem. In the adiabatic methods,

wherek is the occupied state, typically the ground state. In the
mean field methods,

whereΨ is a mixture of adiabatic states given by eq 12. In the
surface hopping methods each trajectory moves classically on
a single adiabatic surface except for the possibility of instan-
taneous switches among the adiabatic states. Thus, the classical
subsystem moves according to the effective potential given by
eq 15, where the occupied statek is allowed to change. The
“exact” forces corresponding to this potential are defined as

Ψ(r ,R,t) ) ∑
n)1

L

øn(R,t) Φn(r ;R) (3)

ip
∂ø̃(R, t)

∂t
) H̃ ø̃(R, t) (4)

Hij(R) ) Kij(R) + Vij(R) + Dij(R) + Gij(R) (5)

Kij(R) ) - ∑
I)1

Nc p2

2MI

∇RI

2 δij (6)

Vij(R) ) 〈Φi|Hq(r , R)|Φj〉 (7)

Dij(R) ) - ∑
I)1

Nc p2

MI

〈Φi|∇RI
Φj〉 ∇RI

(8)

Gij(R) ) - ∑
I)1

Nc p2

2MI

〈Φi|∇RI

2 Φj〉 (9)

Hq(r , R) Φn(r ;R) ) εn(R) Φn(r ;R) (10)

MIR2 I ) FRI

eff ) - ∇
RI

Veff(R) (11)

Ψ(r ,R,t) ) ∑
j)1

L

Cj(t) Φj(r ; R) (12)

ipĊk ) ∑
j)1

L

Cj(Vkj - ipR4 ‚dkj) (13)

dkj(R) ≡ 〈Φk|∇RΦj〉 )
〈Φk|∇RHq|Φj〉

εj - εk
(14)

Veff(R) ) εk(R) ) 〈Φk|Hq|Φk〉 (15)

Veff(R) ) 〈Ψ|Hq|Ψ〉 (16)

FR ) -∇R〈Φk|Hq|Φk〉 (17)
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For wave functions that are exact eigenfunctions of the
HamiltonianHq, the Hellmann-Feynman theorem states that
the force in eq 17 is identical to the Hellmann-Feynman force

As discussed in ref 80, for an appropriate choice of basis
functions the Hellmann-Feynman forces are rigorously identical
to the exact forces even for approximate wave functions. Thus,
typically the Hellmann-Feynman forces are used to numerically
integrate the classical equations of motion.

This article centers on the molecular dynamics with quantum
transitions (MDQT) surface hopping method.23,63 The MDQT
method implements Tully’s fewest switches algorithm,63 which
correctly apportions trajectories among the states according to
the quantum probabilities|Cj(t)|2 (ignoring difficulties due to
classically forbidden states) with the minimum required num-
ber of quantum transitions. In this algorithm the probability
of switching states is defined in terms of the rate of change
of the occupation probabilities, which can be derived from eq
13 to be

where

The rate of change of the occupation probability for statek due
to coupling with statej is bkj, so the change in the occupation
probability for statek due to coupling with statej over a short
time interval δt is bkjδt. The number of state switches is
minimized by assuming that the flux of probability between
each pair of states results from probability transferring in only
one direction. According to this algorithm, the probability of
switching from the current statek to another statej during the
time interval betweent and t + δt is

wherebjk andakk are assumed to remain approximately constant
during the short time intervalδt and thus can be evaluated either
at time t or at time t + δt. If bjk < 0, then the occupation
probability of the occupied statek can be viewed as increasing
due to coupling with statej, so the probability of switching from
statek to statej is zero. On the other hand, ifbjk > 0, then the
occupation probability of the occupied statek can be viewed
as decreasing due to coupling with statej, so the probability of
switching from statek to statej is bjkδt/akk. References 63 and
70 illustrate that this algorithm achieves the correct statistical
populations of the states for model systems.

To determine whether a switch to any statej will occur, a
uniform random numberê (0 < ê < 1) is selected at each time
step in the trajectory. For example, if the occupied statek ) 1,
a switch to state 2 will occur ifê < g12, a switch to state 3 will
occur if g12 < ê< g12 + g13, and so forth. If a switch to a
different statej does occur and ifεk * εj, then the velocities
must be adjusted in order to conserve total energy. As described
in ref 63, the velocities should be adjusted as if they were
subjected to a force in the direction of the nonadiabatic coupling
vector. If there is not enough velocity in the direction of the
nonadiabatic coupling vector to maintain energy conservation,
the system remains in the initial quantum state and the

component of velocity in the direction of the nonadiabatic
coupling vector is reversed.23

The fewest switches surface hopping algorithm possesses a
number of advantageous properties. Since the transitions occur
only when the occupation probabilities are changing rapidly in
time, this algorithm ensures that the switching probabability
vanishes in regions of vanishing nonadiabatic coupling, even if
the time-dependent wave function is a mixture of adiabatic
states. Thus, trajectories move adiabatically outside regions of
strong nonadiabatic coupling, as required for the accurate
description of branching processes. Furthermore, the regions
of strong nonadiabatic coupling do not have to be identified in
advance. Another important property is that the net switching
probability during a finite length of time is independent of time
step size: if the integration time stepδt is reduced, then the
switching probability per time step is reduced by the same factor
while the number of steps in a finite length of time is increased
by the same factor.

One of the critical issues in surface hopping methods is the
treatment of the phase coherence. The standard MDQT method
retains full coherence in the evolution of the quantum amplitudes
(i.e., in the integration of eq 13). As discussed in ref 63, this
coherent evolution of the quantum amplitudes is essential for
the reproduction of quantum interference effects between suc-
cessive regions of strong coupling. For condensed phase sys-
tems, however, quantum decoherence effects will be important.
As discussed in refs 63 and 86, part of the quantum decoherence
will be incorporated naturally in MDQT if a swarm of
trajectories is propagated from the same classical initial condi-
tions. Each trajectory will switch to a different state at a different
time and thus will follow a different path. The divergence of
these paths will lead to a loss of phase coherence for the swarm
of trajectories. However, the accurate incorporation of deco-
herence in this manner could require a large ensemble of
trajectories, which could be computationally prohibitive. In
addition, the standard MDQT method does not include the part
of the quantum decoherence associated with the quantum
mechanical nature of the classical subsystem. Thus, various
approaches have been devised to explicitly incorporate deco-
herence in MDQT or other related surface hopping methods.
The simplest approach is to reset the quantum amplitudes
according to a specified criterion such that the quantum am-
plitude is unity for the occupied state and is zero for all other
states. One method of this type is to estimate a physically
reasonable decoherence time and to reset the amplitudes at every
decoherence time interval. This approach could be problematic
if the amplitudes happened to be reset when the system is in
the region of strong nonadiabatic coupling. In some cases the
criterion for amplitude resetting is based on a physical charac-
teristic of the specific system. For example, in the application
of MDQT to proton transfer in solution presented in ref 23, the
amplitudes were reset when the system reached the reactant or
product region, as determined by the expectation value of the
quantum proton coordinate. References 86 and 87 present a more
sophisticated method for incorporating quantum decoherence
effects into surface hopping simulations.

A number of other surface hopping methods have been
developed.49-72 Webster, Rossky, and Friesner have developed
a surface hopping method (denoted the WRF method in this
article) that utilizes the stationary phase semiclassical Pechukas
force88 to propagate the classical subsystem over each classical
time step.64,65 The WRF method implements a stochastic al-
gorithm analogous to that used in MDQT to determine the
occupied state. Since the WRF method uses mixed-state

FR
HF ) -〈Φk|∇RHq|Φk〉 (18)

ăkk ) ∑
j*k

bkj (19)

bjk ≡ 2p-1Im(ajk
* Vjk) - 2Re(ajk

* R4 ‚djk) (20)

gkj(t,δt) ) max(0,
bjkδt

akk
) (21)
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propagation during each classical time step, it avoids the velocity
rescaling required in the MDQT method during state switches.
(Note that in the limit of infinitesimal time step, the MDQT
velocity rescaling is identical to the WRF implementation of
the Pechukas force.) Coker and co-workers69 combined the long-
time coherent integration of the quantum amplitudes of the
MDQT method with the implementation of the Pechukas force
of the WRF method. Unfortunately, the Pechukas force is
nonlocal in time and thus requires a self-consistent iterative
procedure that is significantly more computationally expensive
than calculation of the adiabatic Hellmann-Feynman force used
in the MDQT method. Recently Prezhdo and Rossky71 presented
a method that combines the fewest switches surface hopping
algorithm of MDQT with a mean field force, which is of a
similar computational cost as the adiabatic Hellmann-Feynman
force. In this method the classical subsystem evolves on a mean
field surface between state switches and is projected onto an
adiabatic state when the mean field approximation becomes
invalid. The investigation of semiclassical methods is also an
active area of research.89-91 Although these other methods are
promising, the MDQT method is still appealing due to its
conceptual and computational simplicity, as well as its high level
of accuracy shown for a wide range of model systems.63,78,84

We have tested the accuracy of the MDQT method for
describing hydrogen transfer reactions by comparing the MDQT
and fully quantum mechanical methods for a simple model
system of a single proton transfer reaction.84 This model system
includes one solvent degree of freedom representing a collective
solvent mode and one hydrogen degree of freedom. The
hydrogen moves in a double well potential, the solvent moves
in a harmonic potential, and the two degrees of freedom are
linearly coupled to each other. The lowest two adiabatic surfaces
as a function of the solvent coordinateR are shown in Figure
3. Note that these surfaces closely resemble the schematic
surfaces in Figure 2. The trajectories and the wavepackets were
started in the L1 state and propagated until they reached one of
the stable states L1 or R1. (Solvent-induced stabilization and
decoherence effects were incorporated as described in ref 84.)
As shown in Figure 2a, in the fully quantum mechanical
calculation the initial wavepacket representing the solvent mode
splits into two separate wavepackets, one on each surface, when
it passes through the region of strong nonadiabatic coupling (R
) 0 for this model system). In the MDQT calculations, an
ensemble of trajectories corresponding to the initial wavepacket
is propagated, and each trajectory moves classically on a single
surface except for instantaneous transitions that typically occur

in the region of strong nonadiabatic coupling (i.e., nearR ) 0
for this model system). Figure 2d schematically depicts two
possible MDQT trajectories.

Figure 4 depicts the time evolution of the quantum prob-
abilities for the quantum wave packet and the MDQT methods
with two different initial wave packet momenta. The initial wave
packet for the fully quantum calculation was on the ground state
and of the form

whereRo, Po, andR are parameters corresponding to the center,
momentum, and width, respectively, of this wave packet. The
corresponding initial conditions for the MDQT simulations were
chosen according to the Wigner representation92,93of this initial
wave packet. A swarm of 1000 trajectories was propagated for
each initial quantum wave packet. The numerical methods for
both the fully quantum mechanical and the MDQT calculations
for this model system are described in ref 84. ForPo ) 1200
(amu Å)/ps (shown in Figure 4a) the quantum wave packet and
MDQT results are virtually indistinguishable. In this case the
reaction is predominantly (90%) nonadiabatic. ForPo ) 600
(amu Å)/ps (shown in Figure 4b) discrepancies in the prob-
abilities of states R2 and L1 are evident between 0.05 and 0.1
ps, but the branching probabilities at 0.1 ps are in good
agreement. Thus, Figure 4 illustrates that MDQT accurately
calculates the branching probabilities for a wide range of initial
momenta. We have also compared the MDQT and fully quantum

Figure 3. Adiabatic potential energy surfaces as a function of the
collective solvent coordinateR for the model single proton transfer
reaction. The surfaces are labeled according to the branching process
depicted in Figure 1. The dashed lines indicate the flattening of the
ground state at the boundaries to model solvent-induced stabilization.

Figure 4. Time evolution of the populations of the adiabatic states
shown in Figure 3 for the fully quantum (solid lines) and the MDQT
(dashed lines) calculations for the model single proton transfer reaction.
The curves are labeled according to Figure 3, and the initial conditions
for the simulations are described in the text with (a)Po )1200 (amu
Å)/ps and (b)Po ) 600 (amu Å)/ps.

ø1(R) ) (2R
π )1/4

e-R(R-Ro)2+iPo(R-Ro)/p (22)
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mechanical methods for analogous model systems including two
solvent degrees of freedom and have shown that MDQT
generates accurate branching probabilities for these types of
systems.48

For the simple model described above, the exact quantum
calculation is computationally faster than the MDQT calculation.
For condensed phase systems with a large number of classical
degrees of freedom, however, the exact quantum calculation is
computationally impractical. Reference 23 presents the applica-
tion of MDQT to a model developed by Azzouz and Borgis42

for intramolecular proton transfer within a phenol-amine
complex in liquid methyl chloride. In this model the phenol-
amine complex was represented as a linear AH-B complex,
and the classical solvent was represented by 255 rigid dipoles
with periodic boundary conditions. The rates and kinetic isotope
effects for this reaction are presented in ref 23. The results
indicate that hydrogen tunneling and nonadiabatic effects are
significant for this process. The effects of photoexcitation of
the hydrogen motion for this model have also been investigated
by initiating trajectories in an excited vibrational state localized
in the reactant region.36 This model serves as a stringent test of
the MDQT method because it exhibits both adiabatic and
nonadiabatic behavior. These simulations illustrate that MDQT
is capable of treating both limits, as well as the intermediate
regime. Moreover, these simulations demonstrate that the
MDQT method is computationally practical for large condensed
phase systems.

In this application of MDQT, the proton transfer reaction was
fast enough that we were able to utilize direct simulation
methods. Many interesting proton transfer reactions, however,
involve a high energy barrier, rendering them too slow for direct
simulation methods. In standard methods for simulating infre-
quent events (i.e., reactions that are slow due to a high energy
barrier),94-96 the total rate constant is expressed as the product
of the classical transition state theory rate constant, which is
the flux through a dividing surface (typically located in the
bottleneck region), and a dynamical factor that accounts for
recrossings of this dividing surface. The flux term can be
calculated using standard statistical mechanical methods such
as umbrella sampling. To calculate the dynamical correction
factor, trajectories are started at the dividing surface and are
integrated backward and forward in time. This calculation is
problematic for simulations utilizing the MDQT method because
it requires knowledge of the quantum amplitudes at the dividing
surface, but the quantum amplitudes depend on the history of
the trajectory. To address this problem, we developed a
nonadiabatic transition state theory that serves as the basis of a
new method for simulating infrequent events in reactions that
evolve on multiple potential energy surfaces.97 The fundamental
principle of this infrequent events method is that an ensemble
of trajectories is propagated (starting at the dividing surface)
using an approximate surface hopping method that does not
depend on the history of the trajectory, and then each trajectory
is weighted in a way that reproduces the results for the true
surface hopping method. This method has been applied in
conjunction with MDQT to a one-dimensional two-state barrier
crossing problem. The combination of MDQT and this method
for simulating infrequent events allows the accurate simulation
of a wide range of proton transfer reactions.

III. Treatment of Multiple Quantum Modes

In the initial applications of MDQT to proton transfer
reactions only a single mode was treated quantum mechanically.
Many processes, such as multiple proton transfer reactions,

require the quantum mechanical treatment of multiple quantum
modes. As discussed in section I, the extension of mixed
quantum/classical methods to processes involving multiple
quantum modes leads to several additional challenges.

The first additional challenge is that the branching processes
become more complicated, so a larger number of adiabatic states
and avoided curve crossings are involved. The treatment of
phase coherence is critical for situations involving multiple
avoided curve crossings due to the presence of quantum
interference effects. Since the standard MDQT method maintains
the coherence of the quantum amplitudes, these quantum
interference effects should be described accurately. To test the
MDQT method for such processes, we have studied a model
system for double proton transfer.78 This model includes two
proton degrees of freedom and one solvent degree of freedom
R, which represents a collective solvent mode. The protons move
in double well potentials, the solvent moves in a harmonic
potential, the solvent is linearly coupled to one proton, and the
two protons are linearly coupled to each other. Figure 5 presents
the potential energy curves for the lowest four adiabatic states,
and Figure 6 is a schematic picture of the branching process
that occurs when the system starts in the ground state withR <
0 (configuration L1L1), passes through the region of strong
nonadiabatic coupling (R) 0), and follows one of three possible
pathways (R1R1, R1R2, or R2L1). Details of this model are
given in ref 78. Analogous to the single proton transfer reactions,
in a fully quantum mechanical calculation the initial wave packet
representing the solvent mode splits into three separate wave
packets, one on each of the three lowest surfaces, when it passes
through the region of strong nonadiabatic coupling (R ) 0 for
this model system). In the MDQT simulations, the classical
trajectories corresponding to the initial wave packet typically
switch from one curve to another at the avoided curve crossings
nearR ) 0.

Figure 7 depicts the time evolution of the populations on the
first four states for both MDQT and fully quantum mechanical
calculations. The initial wave packet for the fully quantum wave
packet propagation was on the ground state and of the form
given in eq 22 withR ) 150 au-2, Ro ) -0.25 au, andPo )
30 au. For the MDQT calculations both protons were treated
quantum mechanically, and the solvent mode was treated
classically. A total of 1020 MDQT trajectories were propagated

Figure 5. Adiabatic potential energy surfaces as a function of the
collective solvent coordinateR for the model double proton transfer
reaction. Only the four lowest energy adiabatic states are shown. To
avoid numerical difficulties, the avoided crossing regions between the
third and fourth states are smoothed out as shown by the dashed lines.
The curves for the first two states are flattened, as shown by the dashed
lines, to incorporate solvent-induced stabilization.
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with initial conditions chosen according to the Wigner repre-
sentation of this initial wave packet. Numerical details are
presented in ref 78. As for the single proton transfer model, the
greatest discrepancies occur in the avoided crossing region, but
the final branching probabilities are in good agreement. Thus,
the MDQT method accurately treats the quantum interference
effects for these types of processes.

The second challenge that arises for processes involving
multiple quantum modes is that the calculation of the adiabatic
states becomes more difficult since the significant correlation
among the quantum modes must be incorporated in a compu-
tationally practical manner. To address this challenge, we have
developed the multiconfigurational MDQT (MC-MDQT)
method,79,80 which combines an MC-SCF treatment of the
vibrational modes with the MDQT method. In the MC-SCF
formulation98 for a general system ofN quantum modes, the
adiabatic eigenstates are approximated by a normalized linear
combination of single configurations:

where the single configurational wave functionsêJ(r ; R) are
products of the orthonormal one-particle statesφjk

(k)(rk; R):

HereJ ) (j1, j2, ..., jN) andQ is the total number of included
configurations. Furthermore, each one-particle stateφj

(k)(rk; R)
can be expanded in a basis ofKk fundamental one-particle basis
functionsøR

(k)(rk):

For simplicity each quantum particle is assumed to move in
one dimension so that the coordinatesrk are scalar quantities,
but the generalization to three-dimensional motion is con-
ceptually straightforward. In addition, for simplicity this dis-
cussion is restricted to real basis functions, states, and configu-
rations.

Application of the variational principle to the total energyE
) 〈Φn|Hq|Φn〉 subject to the orthonormality conditions for the
one particle wave functionsφj

(k) and the adiabatic eigenstates
Φn leads to a set of matrix equations for the configuration
interaction coefficientsdnJ and the single particle expansion
coefficientscjR

(k). These matrix equations must be solved self-
consistently for each classical configurationR. Reference 80
presents an analytical proof that with an appropriate choice of
basis functions the Hellmann-Feynman forces on the classical
particles are equal to the “exact” forces (i.e.,〈Φn|∇RHq|Φn〉 )
∇R〈Φn|Hq|Φn〉) for these variational MC-SCF wave functions.
Thus, the computationally expensive calculation of Pulay
corrections99 to the Hellmann-Feynman forces is avoided.

In the full configuration interaction method, the one particle
statesφjk

(k) in eq 24 are equivalent to the fundamental one-par-
ticle basis functionsøjk

(k), so the configurationsê are products
of the fundamental basis functions. In this case the number of
included configurations is Q) ∏k)1

N Kk. This full configura-
tion interaction method is computationally intractable for
treating more than two or three modes quantum mechanically
because the calculation of the adiabatic states (i.e., the solu-
tion of eq 10) becomes impractical for this large number of
configurations.

The goal of the MC-SCF formulation is to choose physically
reasonable single configurations so that the adiabatic states can
be described with a significantly smaller numberQ of single
configurations than is required for the full configuration
interaction method. One method for choosing physically reason-
able configurations is the approximate MC-SCF method pre-
sented in ref 79, where the one-particle states are calculated
using effective one-particle Hamiltonians derived from the
occupied adiabatic state. In this method, the one-particle wave
functions are calculated by solving the eigenvalue equation

where

Figure 6. Schematic one-dimensional illustration of a branching
process for a double proton transfer reaction. The notation is analogous
to that in Figure 1, where R1R2 indicates that proton 1 is in
configuration R1 and proton 2 is in configuration R2. The pathways
are labeled with A for adiabatic, N for nonadiabatic, and U for
unchanged, so AN indicates that proton 1 is adiabatic and proton 2 is
nonadiabatic.

Figure 7. Time evolution of the populations of the adiabatic states
shown in Figure 5 for fully quantum (solid lines) and MDQT (dashed
lines) calculations for the model double proton transfer reaction.

Φn(r ; R) ) ∑
J

Q

dnJ(R) êJ(r ; R) (23)

êJ(r ; R) ) ∏
k)1

N

φjk

(k)(rk;R) (24)

φj
(k)(rk; R) ) ∑

R)1

Kk

cjR
(k)(R) øR

(k)(rk) (25)

heff
(k)

φj
(k)(rk) ) εj

(k)
φj

(k)(rk) (26)
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Heretk is the kinetic energy of quantum modek, andn indicates
the occupied multiconfigurational adiabatic state. The advantage
of this approximate MC-SCF method is that it provides a clear
physical picture of the reaction dynamics because each proton
can be viewed as moving in a potential determined by both the
occupied adiabatic state and the classical configuration. The one-
particle adiabatic states can be calculated for each proton, and
except for during branching processes each proton can be viewed
as occupying a single one-particle adiabatic state. The multi-
configurational mixing that occurs during branching processes
is required to move from one single configurational adiabatic
state to another. For example, the double well potential curves
in Figure 6 represent single configurational adiabatic states, and
the corresponding labels on the adiabatic states in Figure 5
indicate that far from the region of strong nonadiabatic coupling
the adiabatic states are single configurational. The disadvantages
of this approximate MC-SCF method are that it is not variational
and that the Hellmann-Feynman forces are not rigorously equal
to the “exact” forces.

Thus, the most accurate and robust method is to use the
effective Hamiltonians from the approximate MC-SCF method
to generate a physically reasonable starting guess for the wave
function and, subsequently, to utilize the variational MC-SCF
method to ensure accurate Hellmann-Feynman forces. Refer-
ence 80 compares this MC-SCF method to full configuration
interaction calculations, and the remarkable agreement between
the two methods for the forces and the ground and excited-
state energies validates the use of this MC-SCF method for
nonadiabatic molecular dynamics simulations. The MC-MDQT
method combines this MC-SCF formulation with the MDQT
method described above.

We have applied MC-MDQT to proton transport along chains
of hydrogen-bonded water molecules, as shown in Figure 8.100

This process is thought to play an important role in the fast
translocation of protons over large distances in proteins.
Recently, numerous simulations of proton transfer in water have
been performed.43-46,101-110 In our simulations the interactions
in the protonated water chains were modeled by the PM6
dissociable polarization model developed by Stillinger and co-
workers.111-113 This potential is qualitatively but not quantita-
tively accurate. (In our current calculations we are using a
multistate empirical valence bond model110 to describe the
interactions in the water chains.) Only those protons that form
hydrogen bonds within the water chain were treated quantum
mechanically. (The classical protons were constrained to a fixed
O-H bond length in order to avoid nonphysical vibrational
coupling between the quantum and classical protons.) The
restricted number of quantum protons is due to the computa-
tional expense of the calculation of the many-body potential
surface (and the associated forces) on a multidimensional grid.
Thus, this is not an inherent limitation of the MC-SCF form-
ulation or the MDQT method. The nonequilibrium starting
conditions for these simulations were intended to mimic the
situation in a transmembrane protein, where a proton is trans-
ferred from an amino acid to one end of a water chain that is
embedded in a channel within the protein. Harmonic restraints
on the oxygen atoms were utilized to mimic the structural
restraints of the channel environment. In ref 100 the protons
were induced to transfer along the chain by applying a linearly
increasing external electric field. We have also studied the
effects of hydrogen bonding and solvation by adding two

solvating water molecules to each end of the chain.114 Our
nonequilibrium real-time quantum dynamical simulations of
proton transport along water chains indicate that quantum
dynamical effects such as hydrogen tunneling and nonadiabatic
transitions are significant and that environmental effects such
as fluctuating electric fields, structural constraints, hydrogen
bonding, and solvation strongly impact this process. Future work
will involve studying this process in a more realistic dynamical
protein environment.

IV. Incorporation of Nonadiabatic Transitions between
Both Electronic and Proton Vibrational States

Surface hopping methods were initially developed to incor-
porate transitions between electronic states63-65 and later were
extended to incorporate transitions between proton vibrational
states.23 (In addition, Herman and co-workers61,62have utilized
surface hopping methods to study vibrational relaxation.) Some
processes, such as proton-coupled electron transfer reactions,
require the incorporation of transitions between both electronic
and proton vibrational states. As discussed in section I, the
extension of mixed quantum/classical methods to such processes
leads to several additional challenges, including the accurate
treatment of quantum interference effects due to a larger number
of avoided curve crossings and the efficient calculation of mixed
electronic/proton vibrational states.

To test the accuracy of MDQT for these types of systems
and to study the fundamental principles of PCET, we developed
a general PCET model that consists of three coupled degrees
of freedom: an electron coordinate, a proton coordinate, and a
solvent coordinateR.115 This model system is illustrated in
Figure 9. The electron donor and acceptor are fixed, and
although not shown in this figure the proton donor and acceptor
are also implicitly fixed on theD-A axis. The solvent coordinate
R, which is not shown in Figure 9, represents a collective solvent
mode. The proton moves in a double well potential, and the
solvent moves in a harmonic potential. The electron-donor,
electron-acceptor, and electron-proton interactions are treated
as modified Coulomb interactions, and the solvent mode is
linearly coupled to the proton and the electron. Adjustment of
the flexible parameters in this model generates a wide range of
PCET mechanisms including concerted mechanisms (where the
proton and electron are transferred simultaneously) and sequen-
tial mechanisms (where either the proton or the electron is

heff
(k) ) tk + ∑

J

Q

dnJ
2 〈∏

i*k

N

φji

(i)(ri)|V(r , R)|∏
i*k

N

φji

(i)(ri)〉 (27)

Figure 8. Schematic picture of proton transport along a protonated
chain of four hydrogen-bonded water molecules.

Figure 9. Schematic picture of the one-dimensional model system for
PCET. D and A represent the electron donor and acceptor, and e and
p represent the electron and proton. The proton donor and acceptor are
not explicitly included in this plot but are implicitly assumed to lie
along the axis between D and A. The details of this model are described
in the text.
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transferred first). In the MDQT calculations for these model
systems the proton and electron coordinates were treated
quantum mechanically, while the solvent coordinate was treated
classically. Thus, the adiabatic quantum states were two-
dimensional wave functions depending on both the electron and
proton coordinates. We applied the MDQT method to a series
of these model systems to study the fundamental principles of
PCET.115 In ref 115 the trajectories were initiated on the ground
state, and in ref 116 the trajectories were initiated on the elec-
tronically excited state to simulate photoinduced PCET reactions.
The MDQT simulations for this wide range of model PCET
processes illustrated that nonadiabatic effects play an essential
role in determining the rates and mechanisms of PCET reactions.

As mentioned above, one of the challenges for these types
of processes is that the adiabatic potential surfaces involve
multiple avoided curve crossings, so quantum interference
effects are significant. To test the accuracy of MDQT for these
types of processes we compared the MDQT method to fully
quantum mechanical calculations for one of these model PCET
systems.78 Our results indicate that the MDQT method is
accurate for these types of systems.

Another significant challenge that arises for these types of
systems is the calculation of the mixed electronic/proton
vibrational adiabatic states. The simplicity of the general model
described above allowed us to calculate these adiabatic states
using two-dimensional basis functions that were products of
one-dimensional fundamental basis functions. In other words,
the proton and electron were treated on equal footing. For
more realistic systems involving many electrons, however,
this approach is not computationally practical. For a general
system with electronic degrees of freedomre (with massme),
quantum proton degrees of freedomrp (with massmp), andNs

slow degrees of freedomR (with massesMI), the total
Hamiltonian is

where the Hamiltonian for the fast degrees of freedom (i.e.,re

and rp) is

(Here∇re
2 and∇rp

2 include sums over all electrons and quan-
tum protons, respectively.) For a given classical configura-
tion R the eigenfunctionsΦk(re,rp;R) of Hf are calculated by
solving

where

Our goal is to choose the basis functionsêR(re,rp;R) in a way
that leads to the efficient calculation of the adiabatic states and
provides a clear physical picture of the reaction dynamics. Our
formulation is based on the double adiabatic approximation,
where the electrons are assumed to respond instantaneously to
the motion of the protons and the slow degrees of freedom,
and the protons are assumed to respond instantaneously to the
motion of the slow degrees of freedom. In this double adiabatic
approximation, the electronic Hamiltonian is

and the electronic states for fixed (rp, R) are obtained by solving

The proton vibrational Hamiltonian for electronic statei is

and the proton vibrational states for fixedR and electronic state
i are obtained by solving

In the double adiabatic approximation, the eigenfunctions of
Hf are approximated by

with approximate eigenvaluesεn
(i)(R). We have shown that the

double adiabatic approximation is invalid for general proton-
coupled electron transfer reactions.81 Thus we remove the double
adiabatic approximation by using theêin(re,rp;R) in eq 36 as
basis functions for the expansion given in eq 31. This definition
of the basis functions provides a clear physical picture of the
reaction dynamics because each adiabatic state can be viewed
as predominately the product of an electronic and a proton
vibrational state.

The matrix equation that must be solved to calculate the
adiabatic states is of the form

and the matrix elements of the Hamiltonian H˜ are

where

for i * j and is zero fori ) j, and

which can be expressed in terms of〈ψi|∇rpHe|ψj〉e and
〈ψi|∇ rp

2 He|ψj〉e using the expressions derived in ref 84. In these
equations〈 〉ep, 〈 〉e, and〈 〉p indicate integration over (re, rp), re,
and rp, respectively. Moreover,c̃ has elementscin,k, and Ẽ is
diagonal with elementsEk. Note that ifdij

(ep) ) gij
(ep) ) 0 then

this formulation is identical to the double adiabatic approxima-
tion, where theêin are the exact eigenfunctions ofHf with
eigenvaluesεn

(i).
The combination of this formulation with MDQT is denoted

the EV-MDQT method (for electronic/vibrational adiabatic

Htot ) - ∑
I)1

Ns p2

2MI

∇RI

2 + Hf (28)

Hf ) - p2

2me
∇ re

2 - p2

2mp
∇rp

2 + V(re,rp,R) (29)

HfΦk(re,rp;R) ) Ek(R) Φk(re,rp;R) (30)

Φk(re,rp;R) ) ∑
R
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He ) - p2

2me
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2 + V(re,rp,R) (32)
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2 + εi(rp,R) (34)
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(i)(R) φn
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(i)(rp;R) (36)
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Hin,jm ) 〈êin|Hf|êjm〉ep

) δijδmnεn
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〈φn
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states). In mixed quantum/classical simulations of these types
of systems, the fast degrees of freedom (re,rp) are treated
quantum mechanically, while the slow degrees of freedom (R)
are treated classically. The MDQT methodology is the same as
described above. In this case the nonadiabatic coupling vector
can be evaluated as

for k * l anddkk(R) ) 0. Here

Note that in this formulation, the nonadiabatic coupling between
the electron and proton is incorporated into the adiabatic states
through eq 38, while the nonadiabatic couplings between the
proton and solvent and between the electron and solvent appear
in the nonadiabatic coupling vectordkl(R) (given in eq 41). The
calculation of all of these nonadiabatic coupling terms and the
Hellmann-Feynman forces reduces to the calculation of the
following three terms: 〈ψi|∇rpHe|ψj〉e, 〈ψi|∇ rp

2 He|ψj〉e, and
〈ψi|∇RHe|ψj〉e for fixed (rp,R). Typically, these terms are
straightforward to evaluate. We have applied the EV-MDQT
formulation to the model PCET systems described above.81

The EV-MDQT methodology is applicable to a wide range
of PCET reactions. Cukier and co-workers117-120have developed
an extensive theory to predict the rate of a PCET reaction and
have applied their methodology to experimentally studied model
complexes consisting of electron donor-acceptor pairs juxta-
posed by a hydrogen-bonding interface.121-123 Currently, we are
studying these types of model complexes with the EV-MDQT
method in conjunction with a multistate empirical valence bond
potential with explicit solvent.

V. Concluding Remarks

This article presents the methodology we have developed for
the simulation of hydrogen transfer reactions, including multiple
proton transfer and proton-coupled electron transfer reactions.124

The MDQT surface hopping method has been applied to various
hydrogen transfer reactions. The advantages of the MDQT
method are that it describes branching processes accurately, is
valid in the adiabatic and nonadiabatic limits and the intermedi-
ate regime, and provides real-time dynamical information. To
simulate processes that are too slow for direct simulation
methods, MDQT can be used in conjunction with a method for
simulating infrequent events based on a nonadiabatic transition
state theory.97 Recently, the MC-MDQT method has been
developed to simulate processes involving multiple quantum
modes (e.g., multiple proton transfer reactions). MC-MDQT
combines MDQT with an MC-SCF formulation for the vibra-
tional modes in order to include the significant correlation
between the quantum modes in a computationally practical way.
In addition, recently the EV-MDQT method has been developed
to simulate processes involving transitions between mixed
electronic/proton vibrational adiabatic states (e.g., proton-
coupled electron transfer reactions). EV-MDQT removes the
standard double adiabatic aproximation and includes all nona-
diabatic coupling terms in a computationally efficient way. All
of these approaches provide a clear physical picture of the
reaction dynamics. The combination of these new developments

paves the way for the simulation of a wide range of hydrogen
transfer processes.

Currently, we are applying this methodology to a broad
spectrum of biologically and chemically important processes.
For example, we are applying the MDQT method to proton and
hydride transfer reactions in enzymes. We also plan to use the
MC-MDQT method to study proton transport along water chains
in transmembrane proteins such as bacteriorhodopsin. Moreover,
we are utilizing the EV-MDQT method to investigate experi-
mentally studied electron donor-acceptor pairs juxtaposed by
a hydrogen-bonding interface.121-123 In addition to these ap-
plications, we are continuing to investigate developments that
will improve the accuracy and expand the applicability of this
methodology.

The methodology described in this article represents only a
very small part of a rapidly expanding field. We have not even
attempted to present a complete overview of this field. The
mixed quantum/classical simulation of hydrogen transfer reac-
tions involves two main active areas of research. The first area
is the development of more accurate potential energy surfaces
to describe reactions in solution and in biological systems.
Evidence of great progress in this area is illustrated by the broad
range of available QM/MM potentials and the widespread use
of the Car-Parrinello methodology17 for calculating ab initio
potential surfaces on the fly. The second area of research is the
development of new approaches for incorporating nuclear
quantum dynamical effects in condensed phase systems. In
addition to the work discussed in this article, recent develop-
ments include path integral methods capable of calculating
dynamical quantities73-77 and a range of semiclassical ap-
proaches.89-91,125,126The combination of these two important
areas of research represents the future of the field.
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