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This article presents the methodology we have developed for the simulation of hydrogen transfer reactions,
including multiple proton transfer and proton-coupled electron transfer reactions. The central method discussed
is molecular dynamics with quantum transitions (MDQT), which is a mixed quantum/classical surface hopping
method that incorporates nonadiabatic transitions between the proton vibrational and/or electronic states. The
advantages of MDQT are that it accurately describes branching processes (i.e., processes involving multiple
pathways), is valid in the adiabatic and nonadiabatic limits and the intermediate regime, and provides real-
time dynamical information. The multiconfigurational MDQT (MC-MDQT) method combines MDQT with

an MC-SCF formulation of the vibrational modes for the simulation of processes involving multiple quantum
modes (e.g., for multiple proton transfer reactions). MC-MDQT incorporates the significant correlation between
the quantum modes in a computationally practical way and has been applied to proton transport along water
chains. The EV-MDQT method incorporates transitions between mixed electronic/proton vibrational adiabatic
states, which are calculated in a way that removes the standard double adiabatic aproximation. EV-MDQT
has been applied to model proton-coupled electron transfer reactions. These new developments allow the
simulation of a wide range of biologically and chemically important hydrogen transfer processes.

I. Introduction The simulation of hydrogen transfer reactions requires a

Hydrogen transfer reactions play a critical role in a variety potential energy surface t_hat incorpora_tes guantum mechanical
of important chemical and biological processes. Often the ©ffécts such as the formation and breaking of bonds and changes
hydrogen transfer reaction is coupled to other hydrogen transferin charge distribution. Standard molecular mechanical (MM)
reactions or to an electron transfer reaction. For example, a widebotentials (i.e., standard parametrized analytical functional forms
range of enzymes, including serine protedsealcohol dehy- such as those presented in refs 13 and 14) do not incorporate
drogenase%,and carbonic anhydrasésnvolve proton relay these effects. These quantum mechanical effects can be incor-
systems, which are sequences of coupled proton transferPorated into the potentials in several different ways. One
reactions. Moreover, the coupling between proton motion and approach is to include parametrized terms of suitable analytical
electron transfer plays an important role in the conduction of forms that are fit to ab initio calculatiort8:°A second approach
electrons through proteins such as cytochramié The vital is the Car-Parrinello method? where a partial electronic
processes of photosynthesisand respiratiof?~12involve both structure calculation (typically based on density functional
multiple proton transfer and proton-coupled electron transfer theory) of the entire system is performed at each molecular
(PCET) reactions. Our goal is to utilize computer simulation to dynamics time step. A third approach is to combine quantum
help elucidate the underlying fundamental principles of these mechanical and molecular mechanical methods (the QM/MM
important processes. methods), where reacting portions of the system are treated
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Figure 1. Schematic illustration of a branching process for a single
proton transfer reaction. Each double well potential curve represents (d)
the potential in which the hydrogen atom moves for a particular classical

configuration. The lowest two adiabatic proton quantum states are

shown for each potential curve, and the occupied adiabatic state is

indicated with a solid line. The potential curves are labeled using the —
following notation: L indicates that the left well is lower than the right

well, and R indicates that the right well is lower than the left well. 1 — — —

indicates that the lowest energy adiabatic state is occupied, and 2

indicates that the second lowest energy adiabatic state is occupied. Thugigure 2. Schematic illustration of the two lowest energy adiabatic

L1 indicates that the left well is lower and the lowest energy adiabatic potential surfaces for a single proton transfer reaction as a function of

state is occupied. The pathways are labeled with an A for adiabatic the collective solvent mode, where the relevant configurations are

and an N for nonadiabatic. labeled with the notation of Figure 1. (a) Schematic picture of a fully
quantum mechanical wave packet calculation, where the solvent mode

guantum mechanically (using either ab initio or semiempirical IS represented initially as a single wave packet (shown on the left) that

electronic structure methods), while the remaining portions of Pranches into two separate wave packets (shown on the right) when it
passes through the region of strong nonadiabatic coupling. (b) Schematic

N

the system are treated with standard MM potenfi&i3: Thus, picture of the trajectory resulting from an adiabatic calculation, where
a broad spectrum of methods for obtaining potential energy the trajectory remains on a single adiabatic surface. (c) Schematic
surfaces for hydrogen transfer reactions is available. picture of the trajectory resulting from a mean field calculation, where

Although the development of these types of potential energy the trajectory follows an average path and ends up in a mixture of the
surfaces is an important area of research, this article will focus two adiabatic states. (d) _Schematic picture 01_‘ two possible traje(_:tories
on thedynamicalaspects of hydrogen transfer reactions. Since oM an MDQT calculation, where each trajectory follows a single
the light mass of the transferring hydrogen atom(s) leads to pathway and ends up on either the ground state (shown on the left) or

- \ the excited state (shown on the right) after passing through the region
quantum dynamical effects such as hydrogen tunneling, standarchf strong nonadiabatic coupling.
molecular dynamics simulations, in which all of the nuclei move
classically, are inadequate for the simulation of hydrogen
transfer reactions. Quantum dynamical effects such as hydrogerproton vibrational quantum states are shown for each curve,
tunneling can be incorporated with mixed quantum/classical and the occupied adiabatic state is indicated with a solid line.
molecular dynamics methods, in which one or a few nuclei are If the system starts out in the ground state localized in the
treated quantum mechanically while the remaining nuclei are reactant well (configuration L1) and the solvent fluctuates so
treated classically. For hydrogen transfer reactions typically the that the product well becomes lower in energy, then two possible
transferring hydrogen atom(s) are treated quantum mechanically,pathways can be followed. The first is the adiabatic pathway,
while the remaining atoms (i.e., the donor, acceptor, solvent, where the system remains in the ground state and the proton
and/or protein) are treated classically. A number of mixed ends up localized in the product well (configuration R1). The
guantum/classical simulations have been developed and appliedecond is the nonadiabatic pathway, where the system switches

to proton transfer reactions in solution and in enzyAie¥. The to the excited adiabatic state and thus the proton ends up
various methods differ in the treatment of the interactions localized in the reactant well (configuration R2). Figure 2 depicts
between the quantum and classical subsystems. the lowest two adiabatic potential energy surfaces as a function

Figures 1 and 2 illustrate the fundamental dynamical issues of a collective solvent mode for this branching process. These
involved in the simulation of hydrogen transfer reactions. Figure surfaces correspond to the energies of the two lowest adiabatic
1 depicts a schematic picture of a branching process for a singlestates for the double well potential curves shown in Figure 1
one-dimensional proton transfer reaction in solution. Each for different classical configurations. The branching process in
double well potential curve represents the potential in which Figure 1 corresponds to starting on the ground state in the L1
the hydrogen atom moves for a particular solvent configuration. configuration, passing through the region of strong nonadiabatic
The shape of this double well potential changes as the solventcoupling (the symmetric configuration), and following the
fluctuates, as indicated by the arrows. The lowest two adiabatic adiabatic or the nonadiabatic pathway, ending up in either the
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R1 or the R2 configuration, respectively. (Note that the methods capable of calculating dynamical quantitie$’ One
nonadiabatic pathway requires a switch to the excited adiabaticnotable dynamical method of this type that has been applied to
potential energy surface.) Figure 2a illustrates a fully quantum proton transfer reactions is the centroid molecular dynamics
mechanical calculation, where the solvent mode is representedmethod? 7477 Although these methods are very promising, they
initially as a single wave packet (shown on the left) that branches will not be discussed further here.

into two separate wave packets (shown on the right) when it This article will describe the formulation of surface hopping
passes through the region of strong nonadiabatic coupling. Notefor hydrogen transfer reactions and will present the methodology
that the two separate wave packets move independently (i.e.,we have developed to address the additional challenges that arise
are uncoupled) when they are far from the region of strong for multiple proton transfer reactions and for proton-coupled
nonadiabatic coupling. electron transfer reactions. The first additional challenge that

When the solvent mode is treated classically, the fundamentalarises for these types of reactions is that the branching processes
issue that arises is how the classical subsystem should evolvé?@come more complicated, and the adiabatic potential surfaces
on these potential energy surfaces (i.e., the feedback from theinvolve many different regions of strong nonadiabatic coupling.
guantum subsystem to the classical subsystem). In the standard he presence of multiple avoided curve crossings leads to
adiabatic metho@7-2° the classical subsystem moves on a duantum interference effects. We have shown that the phase-
single adiabatic surface (typically the ground state) and thus coherent surface hopping methods accurately describe these
always follows the adiabatic pathway, as shown in Figure 2b. quantum interference effectéThe second additional challenge
This method is valid in the adiabatic limit (i.e., when the barrier that arises is that the calculation of the adiabatic states becomes
is low) but will fail when there is a significant probability of ~ more difficult. For the case of multiple proton transfer reactions,
following the nonadiabatic pathway. Similarly, perturbative the_S|gn|f|cant co_rrelatlon betv\_/een the transferrlng protons must
methods have been developed for simulating proton transfer P€ incorporated in a computationally practical manner. We have
reactions in the nonadiabatic limit (i.e., when the barrier is addressed this challenge by developing the multiconfigurational
high) 2° Since the barrier height for proton transfer depends on MPQT (MC-MDQT) method, which combines MDQT with a
the distance between the donor and acceptor, which are typicallymulticonfigurational self-consistent-field (MC-SCF) approach
vibrating, a single proton transfer reaction can span the adiabaticfor vibrational modes?® For the case of proton-coupled
and nonadiabatic limits. Thus, although the adiabatic and electron transfer reactions, the adiabatic states are mixed
nonadiabatic methods are extremely useful for certain systems,electronic/proton vibrational states, and typically the standard
a more general method that can describe processes in both th&louble adiabatic approximation is not valid. To address this

adiabatic and nonadiabatic limits and the intermediate regime challenge, we developed the EV-MDQT method, which is based
is desirable. on a formulation for the calculation of mixed electronic/proton

vibrational states that removes the standard double adiabatic

In the mean field method¥,the classical subsystem follows . C o)
approximatior?

an average path derived from a mixture of adiabatic states (as : . . . . .
ge p ( An outline of this article is as follows. Section Il describes

shown in Figure 2c). These methods are useful in the adiabaticth fund tal ts of th licati £ surf hoDDI
and nonadiabatic limits or when the adiabatic states exert similar - ¢ _'undamental aspects of tn€ appiication of surfaceé nopping
to hydrogen transfer reactions, including a method for simulating

forces on the classical subsystem. For many proton transfer.

reactions, however, the two states are of very different characterg‘rf]reerque:&ﬁ;fg;s ;Oercﬁgzc?ﬁserz:gr?tlgl?r?eol\r;l CTK/Iltl:I)p(Sanr?qtstrr]]tcl)ag
(i.e., one ionic and one covalent) and thus exert different forces gy : P

on the classical subsystem. In this case the mean field methoaIor mixed quantum/classical simulation of multiple quantum

does not generate the correct dynamics after passage througlllnOOIeS (e.g., multiple proton transfer reactions)_, and ;ection v
the region of strong nonadiabatic coupling if the classical presents the EV-MDQT method for processes involving nona-

subsystem moves according to a mixture of adiabatic stites. diabatic transitions among both proton vibrational and electronic

) . states (e.g., proton-coupled electron transfer reactions). Conclud-
The surface hopping methdds’? were designed to accu-

. A ing remarks are contained in section V.
rately describe these types of branching processes. In surface

hopping, an ensemble of trajectories is propagated, and each| Fundamental Aspects of Mixed Quantum/Classical
trajectory moves classically on a single surface except for \jethods
instantaneous transitions among the quantum states. Several ) o
different surface hopping algorithms have been developed, and  Consider a general system consisting\afslow degrees of
these methods differ mainly in how the state switches are in- freedom (with massed, and coordinateR;) andN, fast degrees
corporated. In the molecular dynamics with quantum transitions ©f freedom (with massesy and coordinates;). The total
(MDQT) surface hopping methdd3these transitions are in- Hamiltonian is
corporated according to a probabilistic algorithm that ensures N 32
that the correct fraction of trajectories follows each pathway _ 2
(as determined from the quantum probabilities derived from the Hio = — l NVR. + Hq(r’R) (1)
time-dependent Schdinger equation). Figure 2d illustrates two a !
possible surface hopping trajectories, and an ensemble of Sucn/vhere
trajectories should resemble the wave packet dynamics shown
in Figure 2a. Ny 32

An alternative type of mixed quantum/classical molecular Hq(r,R) =— —vrz_ + V(r,R) (2)
dynamics method is based on the Feynman path integral for- = '
malism37-38 Although path integral methods are extremely use-
ful for calculating equilibrium properties, typically they employ (Here R and r are vectors of dimension N3 and 3\,
a transition state theory approximation rather than directly respectively.) To separate the fast and slow coordinates, choose
predict real-time dynamical properties. Recently, however, much a set ofL orthonormal basis functionsD.(r;R)} for the fast
effort has been devoted to the development of path integral coordinatesr. Note that these basis functions depend para-
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metrically on the slow coordinatd®. For simplicity in this ods, where the slow degrees of freedBrare treated classically
article the basis function®,(r;R) are assumed to be real. The and the fast degrees of freedorare treated quantum mechani-
total wave functiont?(r,R,t) can be expanded in terms of these cally, must be developed. In these methods the classical
basis functions with time-dependent coefficieptéR,t): subsystem moves according to the standard equations of motion

L s eff ff
WERY = 3 (R B R) @) MR =FR == Y VTR) ()

where the effective potentia¢e(R) differs for the various
Substituting this into the time-dependent Salinger equation methods. The HamiltoniaHq(r ,R(t)) becomes time-dependent
leads to the following set of coupled equations for the wave through the classical trajectoB(t). The time-dependent wave
functionsyn(R,1): function W(r,R,t) describing the quantum mechanical state at
timet is expanded in terms of the instantanebausthonormal
AG adiabatic basis function®(r; R):

i = AR, Y @) L
wherej is anL -dimensional vector with elemengs(R.t) and YR = ch(t) @,(r; R) (12)
H is anL x L matrix with elements =

H.(R) = K.(R) + V,(R) + D;(R) + G, (R) (5) where Cj(t) are complex-valued expansion coefficients (i.e.,
I ! I I I quantum amplitudes). Note that the adiabatic stdgs; R)

Ne 32 are also time-dependent through the classical trajed®gty
K;j(R) = — Z — Vﬁléij (6) Substituting eq 12 into the time-dependent Sdiger equation
S 2V, leads to
VI](R) = m)i|Hq(rl R)lq)JD (7) y L .
N 2 ihC, = Zlc"(v"" — ihR-d,) (13)
D.(R)=—Y — @V, ® [V, ®) g
ij iR ] R,
= whereV,; is defined in eq 7 and the nonadiabatic coupling vector
dy(R) is defined as
and
N o [@,|VH, | D0
c R ) dy(R) = [ VL= — ——— (14)
Gj(R)=— ;Z_I\/I, [@;| Vg ;0] 9) i

for j = kanddy = 0. Note that the nonadiabatic coupling vector
Note that the brackets indicate integration over only the fast dk(R) corresponds to thB; terms in eq 5, but the corresponding

coordinates . In the diabatic representatidy; = G; = 0 for second derivativ&; terms in eq 5 are rigorously absent in this
all i, j, so the propagation of eq 4 requires the calculation of formulation because the coefficier@{t) depend only on time
only Vj. In the adiabatic representation and not on the classical coordinaiRsin density matrix notation
the density matrix elements are definedags= CCj*, where
Hy(r, R) @,(r;R) = €4(R) @(r;R) (20) the diagonal density matrix elemendg are the occupation

probabilities of the adiabatic states and the off-diagonal elements
soVj = €05 and, in generalD; = 0 andG;; = 0. Thus, in the aq describe the coherence. In practice, eq 13 is integrated
adiabatic representation, Djj, andGj must all be evaluated.  numerically, simultaneously with the integration of the classical
Often the diabatic representation is used for wave packet trajectoryR(t), to obtain the amplitude§;(t) of each included
propagation on multiple surfac%%® For mixed quantum/  quantum mechanical state.
classical simulations, however, the adiabatic representation is As mentioned above, the various mixed quantum/classical
more convenient because the complete potential surfaces argnethods differ in the definition of the effective potential

not available, so the adiabatic basis functishg(r; R) and Vefi(R) for the classical subsystem. In the adiabatic methods,
eigenenergies are obtained locally “on the fly” during the
simulation. In other words, for each classical configuration V(R) = e(R) = [@Hy| P, (15)

sampled during the molecular dynamics simulation, the adiabatic
basis functions and eigenenergies can be obtained by thewherek is the occupied state, typically the ground state. In the

numerical solution of the time-independent Sainger equa- mean field methods,
tion. As mentioned above, the adiabatic representation requires
the calculation oDj; andG; for the fully quantum wave packet Veﬁ(R) = [W|H, WD (16)

calculations. Reference 84 shows that the calculation of both
the Dj and theG; terms does not involve the calculation of whereW is a mixture of adiabatic states given by eq 12. In the
derivatives of the basis functionB, but rather involves only surface hopping methods each trajectory moves classically on
the derivatives of the HamiltoniaH,. Thus, these terms are  a single adiabatic surface except for the possibility of instan-
straightforward to evaluate “on the fly”. Note that eq 4 is exact taneous switches among the adiabatic states. Thus, the classical
for a complete basis set and can be propagated using standargubsystem moves according to the effective potential given by
numerical method8 for a small number of degrees of freedom. eq 15, where the occupied stdtés allowed to change. The

For systems with more than a few slow degrees of freedom, “exact” forces corresponding to this potential are defined as
however, the exact solution of eq 4 is computationally intrac-
table. Thus mixed quantum/classical molecular dynamics meth- Fr= —VrI@yH PO 17)
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For wave functions that are exact eigenfunctions of the component of velocity in the direction of the nonadiabatic
HamiltonianHg, the Hellmanr-Feynman theorem states that coupling vector is reversed.

the force in eq 17 is identical to the HellmanReynman force The fewest switches surface hopping algorithm possesses a
e number of advantageous properties. Since the transitions occur
Fr- = — @ |VgrH P (18) only when the occupation probabilities are changing rapidly in

time, this algorithm ensures that the switching probabability

As discussed in ref 80, for an appropriate choice of basis yanishes in regions of vanishing nonadiabatic coupling, even if
functions the HellmannFeynman forces are rigorously identical the time-dependent wave function is a mixture of adiabatic
to the exact forces even for approximate wave functions. Thus, states. Thus, trajectories move adiabatically outside regions of
typically the Hellmanr-Feynman forces are used to numerically strong nonadiabatic coupling, as required for the accurate
integrate the classical equations of motion. description of branching processes. Furthermore, the regions

This article centers on the molecular dynamics with quantum of strong nonadiabatic coupling do not have to be identified in
transitions (MDQT) surface hopping meth#&tk3 The MDQT advance. Another important property is that the net switching
method implements Tully’s fewest switches algorittahich probability during a finite length of time is independent of time
correctly apportions trajectories among the states according tostep size: if the integration time stey is reduced, then the
the quantum probabilitiefCi(t)|* (ignoring difficulties due to  swjitching probability per time step is reduced by the same factor

classically forbidden states) with the minimum required num- hjle the number of steps in a finite length of time is increased
ber of quantum transitions. In this algorithm the probability py the same factor.

of switching states is defined in terms of the rate of change
of the occupation probabilities, which can be derived from eq tr
13 to be

One of the critical issues in surface hopping methods is the
eatment of the phase coherence. The standard MDQT method
retains full coherence in the evolution of the quantum amplitudes
2= Yby (19) (i.e., in the integration of eq 13). As discussed in ref 63, this
k Z K coherent evolution of the quantum amplitudes is essential for
= the reproduction of quantum interference effects between suc-
where cessive regions of strong coupling. For condensed phase sys-
tems, however, quantum decoherence effects will be important.
by = 2h*1|m(a;k\/jk) — 2Re(a]-*kl'?-djk) (20) As discugsed in refs 63 and 86, part of the quantum decoherence
will be incorporated naturally in MDQT if a swarm of

The rate of change of the occupation probability for skadeie trajectories is propagated from the same classical initial condi-
to coupling with statg is by, so the change in the occupation tions. Each trajectory will switch to a different state at a different

probability for statek due to coupling with statpover a short ~ time and thus will follow a different path. The divergence of
time interval ot is bgot. The number of state switches is these paths will lead to a loss of phase coherence for the swarm
minimized by assuming that the flux of probability between Of trajectories. However, the accurate incorporation of deco-
each pair of states results from probability transferring in only herence in this manner could require a large ensemble of
one direction. According to this algorithm, the probability of ~trajectories, which could be computationally prohibitive. In
switching from the current stateto another statgduring the ~ addition, the standard MDQT method does not include the part
time interval between andt + ot is of the quantum decoherence associated with the quantum
mechanical nature of the classical subsystem. Thus, various
bjkét approaches have been devised to explicitly incorporate deco-
gii(t,0t) = max 0'? (21) herence in MDQT or other related surface hopping methods.
K The simplest approach is to reset the quantum amplitudes

whereby, anday are assumed to remain approximately constant according to a specified criterion such that the quantum am-
during the short time intervalt and thus can be evaluated either Plitude is unity for the occupied state and is zero for all other

at time't or at timet + ot. If by < 0, then the occupation states. One method of t_hls type is to estimate a physically
probability of the occupied statecan be viewed as increasing reasonable de(_:ohe_rence time and to reset the amplitudes at every
due to coupling with stat so the probability of switching from _decoheren9e time interval. This approach could be problem_at!c
statek to statej is zero. On the other hand, ifc > 0, then the if the amplltudes happeneq to pe reset when the system is in
occupation probability of the occupied stdtean be viewed th_e region of strong nonadla_\bat!c coupling. In some cases the
as decreasing due to coupling with statso the probability of ~ criterion for amplitude resetting is based on a physical charac-
switching from state to statej is bydt/ag. References 63 and teristic of the specific system. For gxample, in thg application
70 illustrate that this algorithm achieves the correct statistical ©f MDQT to proton transfer in solution presented in ref 23, the

populations of the states for model systems. amplitudes were reset when the system reached the reactant or
To determine whether a switch to any stateill occur, a product region, as determined by the expectation value of the

uniform random numbeg (0 < & < 1) is selected at each time ~ quantum proton coordinate: Referencgs 86 and 87 present a more

step in the trajectory. For example, if the occupied statel, sophisticated method for incorporating quantum decoherence

a switch to state 2 will occur i < gu a switch to state 3will ~ effects into surface hopping simulations.

occur if g1z < &< g12 + g1z, and so forth. If a switch to a A number of other surface hopping methods have been

different statg does occur and i€ = ¢, then the velocities developed?®72Webster, Rossky, and Friesner have developed
must be adjusted in order to conserve total energy. As describeda surface hopping method (denoted the WRF method in this
in ref 63, the velocities should be adjusted as if they were article) that utilizes the stationary phase semiclassical Pechukas
subjected to a force in the direction of the nonadiabatic coupling force®® to propagate the classical subsystem over each classical
vector. If there is not enough velocity in the direction of the time step?*5%5 The WRF method implements a stochastic al-
nonadiabatic coupling vector to maintain energy conservation, gorithm analogous to that used in MDQT to determine the
the system remains in the initial quantum state and the occupied state. Since the WRF method uses mixed-state
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Figure 3. Adiabatic potential energy surfaces as a function of the ime (ps)
collective solvent coordinat® for the model single proton transfer
reaction. The surfaces are labeled according to the branching process 1.0 T T T T T
depicted in Figure 1. The dashed lines indicate the flattening of the (b)
ground state at the boundaries to model solvent-induced stabilization. 08 — full quantum |

propagation during each classical time step, it avoids the velocity
rescaling required in the MDQT method during state switches.
(Note that in the limit of infinitesimal time step, the MDQT
velocity rescaling is identical to the WRF implementation of
the Pechukas force.) Coker and co-worReecembined the long-
time coherent integration of the quantum amplitudes of the
MDQT method with the implementation of the Pechukas force
of the WRF method. Unfortunately, the Pechukas force is .
nonlocal in time and thus requires a self-consistent iterative 0.0 0.2 0.4 0.6
procedure that is significantly more computationally expensive time (ps)

than calculation of the adiabatic HellmanReynman force used

probability

. Figure 4. Time evolution of the populations of the adiabatic states
in the MDQT method. Recently Prezhdo and Ro$Syesented shown in Figure 3 for the fully quantum (solid lines) and the MDQT

a me_thOd that Comb'n_es the fewes_t switches Suffac‘? hOpp'ng(dashed lines) calculations for the model single proton transfer reaction.
algorithm of MDQT with a mean field force, which is of @  The curves are labeled according to Figure 3, and the initial conditions
similar computational cost as the adiabatic HellmaRaynman for the simulations are described in the text with P3)=1200 (amu
force. In this method the classical subsystem evolves on a mear®)/ps and (b)P, = 600 (amu A)/ps.
field surface between state switches and is projected onto an
adiabatic state when the mean field approximation becomesin the region of strong nonadiabatic coupling (i.e., nRar O
invalid. The investigation of semiclassical methods is also an for this model system). Figure 2d schematically depicts two
active area of researéf:9! Although these other methods are  possible MDQT trajectories.
promising, the MDQT method is still appealing due to its ~ Figure 4 depicts the time evolution of the quantum prob-
conceptual and computational simplicity, as well as its high level abilities for the quantum wave packet and the MDQT methods
of accuracy shown for a wide range of model syst&#igs4 with two different initial wave packet momenta. The initial wave
We have tested the accuracy of the MDQT method for packet for the fully quantum calculation was on the ground state
describing hydrogen transfer reactions by comparing the MDQT and of the form
and fully quantum mechanical methods for a simple model
system of a single proton transfer reactéihis model system (R) = (2_(1)1’4 o “R-R)ZHPo(R-Ro)/h (22)
includes one solvent degree of freedom representing a collective 1
solvent mode and one hydrogen degree of freedom. The
hydrogen moves in a double well potential, the solvent moves whereR,, P,, anda are parameters corresponding to the center,
in a harmonic potential, and the two degrees of freedom are momentum, and width, respectively, of this wave packet. The
linearly coupled to each other. The lowest two adiabatic surfacescorresponding initial conditions for the MDQT simulations were
as a function of the solvent coording®eare shown in Figure  chosen according to the Wigner representd&étof this initial
3. Note that these surfaces closely resemble the schematiavave packet. A swarm of 1000 trajectories was propagated for
surfaces in Figure 2. The trajectories and the wavepackets weresach initial quantum wave packet. The numerical methods for
started in the L1 state and propagated until they reached one ofboth the fully quantum mechanical and the MDQT calculations
the stable states L1 or R1. (Solvent-induced stabilization and for this model system are described in ref 84. Pgr= 1200
decoherence effects were incorporated as described in ref 84.Yamu A)/ps (shown in Figure 4a) the quantum wave packet and
As shown in Figure 2a, in the fully quantum mechanical MDQT results are virtually indistinguishable. In this case the
calculation the initial wavepacket representing the solvent mode reaction is predominantly (90%) nonadiabatic. Rar= 600
splits into two separate wavepackets, one on each surface, whetfamu A)/ps (shown in Figure 4b) discrepancies in the prob-
it passes through the region of strong nonadiabatic couplng ( abilities of states R2 and L1 are evident between 0.05 and 0.1
= 0 for this model system). In the MDQT calculations, an ps, but the branching probabilities at 0.1 ps are in good
ensemble of trajectories corresponding to the initial wavepacket agreement. Thus, Figure 4 illustrates that MDQT accurately
is propagated, and each trajectory moves classically on a singlecalculates the branching probabilities for a wide range of initial
surface except for instantaneous transitions that typically occur momenta. We have also compared the MDQT and fully quantum
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mechanical methods for analogous model systems including two
solvent degrees of freedom and have shown that MDQT
generates accurate branching probabilities for these types of
systemg'®

For the simple model described above, the exact quantum
calculation is computationally faster than the MDQT calculation.
For condensed phase systems with a large number of classical
degrees of freedom, however, the exact quantum calculation is
computationally impractical. Reference 23 presents the applica-
tion of MDQT to a model developed by Azzouz and Bofgis
for intramolecular proton transfer within a pheramine
complex in liquid methyl chloride. In this model the pherol
amine complex was represented as a linear-8Hcomplex,
and the classical solvent was represented by 255 rigid dipoles 0
with periodic boundary conditions. The rates and kinetic isotope ’ ’ ) R (A)
effects for this reaction are presented in ref 23. The results
indicate that hydrogen tunneling and nonadiabatic effects are Figure'5. Adiabatic pot_ential energy surfaces as a function of the
significant for this process. The effects of photoexcitation of collective solvent coordinatR for the model double proton transfer

the hvdrogen motion for this model have also been investi atedreaction. Only the four lowest energy adiabatic states are shown. To
yarog g avoid numerical difficulties, the avoided crossing regions between the

by initiating trajectories in an excited vibrational state localized hird and fourth states are smoothed out as shown by the dashed lines.
in the reactant regioff. This model serves as a stringent test of The curves for the first two states are flattened, as shown by the dashed
the MDQT method because it exhibits both adiabatic and lines, to incorporate solvent-induced stabilization.

nonadiabatic behavior. These simulations illustrate that MDQT . ) )

is capable of treating both limits, as well as the intermediate require the quantum mechanical treatment of multiple quantum

regime. Moreover, these simulations demonstrate that themodes. As discussed in section |, the extension of mixed

MDQT method is computationally practical for large condensed guantum/classical methods to processes involving multiple

phase systems. qguantum modes leads to several additional challenges.

In this application of MDQT, the proton transfer reaction was The first additiona_l challenge is that the branching processes
fast enough that we were able to utilize direct simulation become more complicated, so a larger number of adiabatic states
methods. Many interesting proton transfer reactions, however, 2hd avoided curve crossings are involved. The treatment of
involve a high energy barrier, rendering them too slow for direct Phase coherence is critical for situations involving multiple
simulation methods. In standard methods for simulating infre- @voided curve crossings due to the presence of quantum
quent events (i.e., reactions that are slow due to a high enelrgyInterference effects. Since the standard MDQT method maintains

barrier)?4-% the total rate constant is expressed as the productthe® coherence of the quantum amplitudes, these quantum
of the classical transition state theory rate constant, which is interference effects should be described accurately. To test the
the flux through a dividing surface (typically located in the MDQT method for such processes, we have studied a model
bottleneck region), and a dynamical factor that accounts for System for double proton transférThis model includes two
recrossings of this dividing surface. The flux term can be Proton degrees of freedom and one solvent degree of freedom
calculated using standard statistical mechanical methods suct Which represents a collective solvent mode. The protons move
as umbrella sampling. To calculate the dynamical correction IN double well potentials, the solvent moves in a harmonic
factor, trajectories are started at the dividing surface and arePotential, the solvent is linearly coupled to one proton, and the
integrated backward and forward in time. This calculation is WO Protons are linearly coupled to each other. Figure 5 presents
problematic for simulations utilizing the MDQT method because the potential energy curves for the lowest four adiabatic states,
it requires knowledge of the quantum amplitudes at the dividing @nd Figure 6 is a schematic picture of the branching process
surface, but the quantum amplitudes depend on the history ofthat occurs when the system starts in the ground stateRvith

the trajectory. To address this problem, we developed a O (configuration L1L1), passes through the region of strong
nonadiabatic transition state theory that serves as the basis of &°0hadiabatic couplindY= 0), and follows one of three possible
new method for simulating infrequent events in reactions that Pathways (R1R1, R1R2, or R2L1). Details of this model are
evolve on multiple potential energy surfa®3he fundamental ~ 9iven in ref 78. Analogous to the single proton transfer reactions,
principle of this infrequent events method is that an ensemble IN a fully quantum mechanical calcul_at|o_n the initial wave packet
of trajectories is propagated (starting at the dividing surface) representing the solvent mode splits into three separate wave
using an approximate surface hopping method that does notPackets, one onleach of the three onvest_surface;, when it passes
depend on the history of the trajectory, and then each trajectorythrough the region of strong nonadiabatic coupliRg=( 0 for

is weighted in a way that reproduces the results for the true this model system). In the MDQT simulations, the classical
surface hopping method. This method has been applied in trajectories corresponding to the initial wave packet typ|cally
conjunction with MDQT to a one-dimensional two-state barrier switch from one curve to another at the avoided curve crossings
crossing problem. The combination of MDQT and this method N€arR = 0.

for simulating infrequent events allows the accurate simulation _ Figure 7 depicts the time evolution of the populations on the
of a wide range of proton transfer reactions. first four states for both MDQT and fully quantum mechanical

calculations. The initial wave packet for the fully quantum wave
packet propagation was on the ground state and of the form
given in eq 22 witha. = 150 au?, R, = —0.25 au, and®, =

In the initial applications of MDQT to proton transfer 30 au. For the MDQT calculations both protons were treated
reactions only a single mode was treated quantum mechanically.quantum mechanically, and the solvent mode was treated
Many processes, such as multiple proton transfer reactions,classically. A total of 1020 MDQT trajectories were propagated

Energy (kcal/mol)

lll. Treatment of Multiple Quantum Modes
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Figure 6. Schematic one-dimensional illustration of a branching
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Q
Q,(r;R) = Z duy(R) &5(r; R) (23)

where the single configurational wave functiofgr; R) are
products of the orthonormal one-particle stap{%‘é(rk; R):

N
& R) = ﬂ #(reR) (24)

HereJ = (j1, j2, ..., jn) and Q is the total number of included
configurations. Furthermore, each one-particle Sméﬁérk; R)
can be expanded in a basiskyffundamental one-patrticle basis
functionsxg‘)(rk):

Ky

#0R= 3 R 2 )

For simplicity each quantum particle is assumed to move in

process for a double proton transfer reaction. The notation is analogouspne dimension so that the coordinatesre scalar quantities,

to that in Figure 1, where R1R2 indicates that proton 1 is in
configuration R1 and proton 2 is in configuration R2. The pathways
are labeled with A for adiabatic, N for nonadiabatic, and U for
unchanged, so AN indicates that proton 1 is adiabatic and proton 2 is
nonadiabatic.

1

--------- MDQT
0.8 full quantum ]
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Qo6 |\
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Figure 7. Time evolution of the populations of the adiabatic states
shown in Figure 5 for fully quantum (solid lines) and MDQT (dashed
lines) calculations for the model double proton transfer reaction.

with initial conditions chosen according to the Wigner repre-
sentation of this initial wave packet. Numerical details are
presented in ref 78. As for the single proton transfer model, the
greatest discrepancies occur in the avoided crossing region, bu
the final branching probabilities are in good agreement. Thus,
the MDQT method accurately treats the quantum interference
effects for these types of processes.

The second challenge that arises for processes involving
multiple quantum modes is that the calculation of the adiabatic
states becomes more difficult since the significant correlation

among the quantum modes must be incorporated in a compu-

tationally practical manner. To address this challenge, we have
developed the multiconfigurational MDQT (MC-MDQT)
method’®8% which combines an MC-SCF treatment of the
vibrational modes with the MDQT method. In the MC-SCF
formulatiorf® for a general system dfl quantum modes, the

but the generalization to three-dimensional motion is con-
ceptually straightforward. In addition, for simplicity this dis-
cussion is restricted to real basis functions, states, and configu-
rations.

Application of the variational principle to the total energy
= [@n|Hq|PrOsubject to the orthonormality conditions for the
one particle wave functiong® and the adiabatic eigenstates
®, leads to a set of matrix equations for the configuration
interaction coefficientgd,; and the single particle expansion
coefficientscﬂ?. These matrix equations must be solved self-
consistently for each classical configuratiBn Reference 80
presents an analytical proof that with an appropriate choice of
basis functions the HellmantFeynman forces on the classical
particles are equal to the “exact” forces (i.@,| VrHq|Pnl=
Vr@y|Hq|Pn0 for these variational MC-SCF wave functions.
Thus, the computationally expensive calculation of Pulay
correction® to the Hellmana-Feynman forces is avoided.

In the full configuration interaction method, the one particle
statesg¥ in eq 24 are equivalent to the fundamental one-par-
ticle basis functionsg-(kk), so the configuration§ are products
of the fundamental basis functions. In this case the number of
included configurations is @= [\_,Kk. This full configura-
tion interaction method is computationally intractable for
treating more than two or three modes quantum mechanically
because the calculation of the adiabatic states (i.e., the solu-
tion of eq 10) becomes impractical for this large number of
configurations.

t The goal of the MC-SCF formulation is to choose physically
reasonable single configurations so that the adiabatic states can
be described with a significantly smaller numti@rof single
configurations than is required for the full configuration
interaction method. One method for choosing physically reason-
able configurations is the approximate MC-SCF method pre-
sented in ref 79, where the one-particle states are calculated
using effective one-particle Hamiltonians derived from the
occupied adiabatic state. In this method, the one-particle wave
functions are calculated by solving the eigenvalue equation

86" (r) = €99 (ry) (26)

adiabatic eigenstates are approximated by a normalized linear

combination of single configurations:

where
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Q N ) N ] H H
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Herety is the kinetic energy of quantum molgeandn indicates 0 (o]
the occupied multiconfigurational adiabatic state. The advantage | |
of this approximate MC-SCF method is that it provides a clear H H

physical picture of the reaction dynamics because each protonFigure 8. Schematic picture of proton transport along a protonated
can be viewed as moving in a potential determined by both the chain of four hydrogen-bonded water molecules.

occupied adiabatic state and the classical configuration. The one- D

particle adiabatic states can be calculated for each proton, and e P A
except for during branching processes each proton can be viewed Or_o—o—o
as occupying a single one-particle adiabatic state. The multi- <>

configurational mixing that occurs during branching processes "

is required to move from one single configurational adiabatic T ) _
state to another. For example, the double well potential curves Figure 9. Schematic picture of the one-dimensional model system for
in Figure 6 represent single configurational adiabatic states, and”CE - D and A represent the electron donor and acceptor, and e and

- . ; . ; p represent the electron and proton. The proton donor and acceptor are
the corresponding labels on the adiabatic states in Figure 5y, ayniicitly included in this plot but are implicitly assumed to lie

indicat.e tha}t far from the region of strong nonadiabaFiC coupling along the axis between D and A. The details of this model are described
the adiabatic states are single configurational. The disadvantages the text.

of this approximate MC-SCF method are that it is not variational
and that the HellmanaFeynman forces are not rigorously equal solvating water molecules to each end of the ch&rOur
to the “exact” forces. nonequilibrium real-time quantum dynamical simulations of
Thus, the most accurate and robust method is to use theproton transport along water chains indicate that quantum
effective Hamiltonians from the approximate MC-SCF method dynamical effects such as hydrogen tunneling and nonadiabatic
to generate a physically reasonable starting guess for the waveransitions are significant and that environmental effects such
function and, subsequently, to utilize the variational MC-SCF as fluctuating electric fields, structural constraints, hydrogen
method to ensure accurate Hellmarfreynman forces. Refer-  bonding, and solvation strongly impact this process. Future work
ence 80 compares this MC-SCF method to full configuration will involve studying this process in a more realistic dynamical
interaction calculations, and the remarkable agreement betweerprotein environment.
the two methods for the forces and the ground and excited-
state energies validates the use of this MC-SCF method for |y |ncorporation of Nonadiabatic Transitions between
nonadiabatic molecular dynamics simulations. The MC-MDQT Bgth Electronic and Proton Vibrational States
method combines this MC-SCF formulation with the MDQT
method described above. Surface hopping methods were initially developed to incor-
We have applied MC-MDQT to proton transport along chains porate transitions between electronic stere§ and later were
of hydrogen-bonded water molecules, as shown in Figdf8 8.  extended to incorporate transitions between proton vibrational
This process is thought to play an important role in the fast states®(In addition, Herman and co-workét¢?have utilized
translocation of protons over large distances in proteins. surface hopping methods to study vibrational relaxation.) Some
Recently, numerous simulations of proton transfer in water have processes, such as proton-coupled electron transfer reactions,
been performedd46.10-110|n our simulations the interactions ~ require the incorporation of transitions between both electronic
in the protonated water chains were modeled by the PM6 and proton vibrational states. As discussed in section |, the
dissociable polarization model developed by Stillinger and co- extension of mixed quantum/classical methods to such processes
workers!'-113 This potential is qualitatively but not quantita- leads to several additional challenges, including the accurate
tively accurate. (In our current calculations we are using a treatment of quantum interference effects due to a larger number
multistate empirical valence bond mo#élto describe the of avoided curve crossings and the efficient calculation of mixed
interactions in the water chains.) Only those protons that form electronic/proton vibrational states.
hydrogen bonds within the water chain were treated quantum To test the accuracy of MDQT for these types of systems
mechanically. (The classical protons were constrained to a fixed and to study the fundamental principles of PCET, we developed
O—H bond length in order to avoid nonphysical vibrational a general PCET model that consists of three coupled degrees
coupling between the quantum and classical protons.) Theof freedom: an electron coordinate, a proton coordinate, and a
restricted number of quantum protons is due to the computa- solvent coordinateR.1*®> This model system is illustrated in
tional expense of the calculation of the many-body potential Figure 9. The electron donor and acceptor are fixed, and
surface (and the associated forces) on a multidimensional grid.although not shown in this figure the proton donor and acceptor
Thus, this is not an inherent limitation of the MC-SCF form- are also implicitly fixed on th®—A axis. The solvent coordinate
ulation or the MDQT method. The nonequilibrium starting R, which is not shown in Figure 9, represents a collective solvent
conditions for these simulations were intended to mimic the mode. The proton moves in a double well potential, and the
situation in a transmembrane protein, where a proton is trans-solvent moves in a harmonic potential. The electron-donor,
ferred from an amino acid to one end of a water chain that is electron-acceptor, and electron-proton interactions are treated
embedded in a channel within the protein. Harmonic restraints as modified Coulomb interactions, and the solvent mode is
on the oxygen atoms were utilized to mimic the structural linearly coupled to the proton and the electron. Adjustment of
restraints of the channel environment. In ref 100 the protons the flexible parameters in this model generates a wide range of
were induced to transfer along the chain by applying a linearly PCET mechanisms including concerted mechanisms (where the
increasing external electric field. We have also studied the proton and electron are transferred simultaneously) and sequen-
effects of hydrogen bonding and solvation by adding two tial mechanisms (where either the proton or the electron is
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transferred first). In the MDQT calculations for these model h2

systems the proton and electron coordinates were treated He= ZmEsze +V(rorpR) (32)
quantum mechanically, while the solvent coordinate was treated
classically. Thus, the adiabatic quantum states were two-
dimensional wave functions depending on both the electron and
proton coordinates. We applied the MDQT method to a series Hewi(re;rp,R) = ei(rp! R) wi(re;rp,R) (33)
of these model systems to study the fundamental principles of
PCET!%In ref 115 the trajectories were initiated on the ground The proton vibrational Hamiltonian for electronic statis
state, and in ref 116 the trajectories were initiated on the elec-
tronically excited state to simulate photoinduced PCET reactions. 0M_ R _,
The MDQT simulations for this wide range of model PCET Hy = ﬁvrp + 6i(rp'R) (34)
processes illustrated that nonadiabatic effects play an essential
role in determining the rates and mechanisms of PCET reactions.and the proton vibrational states for fixBdand electronic state

As mentioned above, one of the challenges for these types;j are obtained by solving
of processes is that the adiabatic potential surfaces involve
multiple avoided curve crossings, so quantum interference HS)¢>S)(rp;R)=eﬂ)(R) ¢>ﬂ)(rp;R) (35)
effects are significant. To test the accuracy of MDQT for these
types of processes we compared the MDQT method to fully |n the double adiabatic approximation, the eigenfunctions of
guantum mechanical calculations for one of these model PCETH; are approximated by
systemg?® Our results indicate that the MDQT method is
accurate for these types of systems. En(ral yR) = wi(re;rp,R)¢g)(rp;R) (36)

Another significant challenge that arises for these types of
systems is the calculation of the mixed electronic/proton with approximate eigenvalueﬁ)(R). We have shown that the
V|brat|0na| adlabatIC states. The Slmp|ICIty Of the general mOde| double adiabatic approximation iS invalid for general proton_
described above allowed us to calculate these adiabatic stategoypled electron transfer reactichdhus we remove the double
using two-dimensional basis functions that were products of adiabatic approximation by using thig(rerR) in eq 36 as
one-dimensional fundamental basis functions. In other words, pasis functions for the expansion given in eq 31. This definition
the proton and electron were treated on equal footing. For of the basis functions provides a clear physical picture of the
more realistic systems involving many electrons, however, reaction dynamics because each adiabatic state can be viewed
this approach is not computationally practical. For a general a5 predominately the product of an electronic and a proton

and the electronic states for fixedh,(R) are obtained by solving

system with electronic degrees of freedogn(with massmy), vibrational state.
quantum proton degrees of freedwm(wﬂh massmp), andNs The matrix equation that must be solved to calculate the
slow degrees of freedonR (with massesM)), the total adiabatic states is of the form
Hamiltonian is B B
He =¢E (37)
Ng 2
Ho = — _vél + H, (28) and the matrix elements of the Hamiltonianatre
S 2M,

. . . Hin,jm = |zin'Hf|§jmlgp
where the Hamiltonian for the fast degrees of freedom (ie.,

. ) R . )
andry) is — 6ij6mn65':)(R) _ n_]pmbﬂ)|di(jep).vrp¢(r£q _
_ K 2 K 2 _
Hi = 2m, vre 2mp Vrp + V(I’e,rp,R) (29) %@ﬂ”gi(jep)(bﬂm (38)
(HereV;2 and v, ? include sums over all electrons and quan- where
tum protons, respectively.) For a given classical configura-
tion R the eigenfunctionsPy(re,lp;R) of Hr are calculated by @1V, Hly.[d
. i el'tj
solving di(jep)(fp,R) — @,iwrpwi@ = c "_ c (39)
Hf(pk(re’rp;R) = Ek(R) cI)k(re!rp;R) (30)
fori = j and is zero foi = j, and
where
(ep) — 2
g = WV yild (40)
D[l iR) = ZCakga(re,rp;R) (31) P
o

which can be expressed in terms @pi| Vi Helyjld and

Our goal is to choose the basis functidag e »;R) in a way EyfiWerHeW)jQ using the expressions derived in ref 84. In these
that leads to the efficient calculation of the adiabatic states and €quationsdy, [1d, andCIjindicate integration overg, rp), re,
provides a clear physical picture of the reaction dynamics. Our @ndry, respectively. MoreoverG has elementsi,, andE is
formulation is based on the double adiabatic approximation, diagonal with element&,. Note that ifd™ = ¢ = 0 then
where the electrons are assumed to respond instantaneously tghis formulation is identical to the double adiabatic approxima-
the motion of the protons and the slow degrees of freedom, tion, where the&j, are the exact eigenfunctions éfi with
and the protons are assumed to respond instantaneously to theigenvalue&ﬂ).
motion of the slow degrees of freedom. In this double adiabatic =~ The combination of this formulation with MDQT is denoted
approximation, the electronic Hamiltonian is the EV-MDQT method (for electronic/vibrational adiabatic
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states). In mixed quantum/classical simulations of these typespaves the way for the simulation of a wide range of hydrogen
of systems, the fast degrees of freedomarf) are treated transfer processes.

guantum mechanically, while the slow degrees of freedBin ( Currently, we are applying this methodology to a broad
are treated classically. The MDQT methodology is the same asspectrum of biologically and chemically important processes.
described above. In this case the nonadiabatic coupling vectorFor example, we are applying the MDQT method to proton and

can be evaluated as hydride transfer reactions in enzymes. We also plan to use the
MC-MDQT method to study proton transport along water chains
dy(R) = [@| VP, in transmembrane proteins such as bacteriorhodopsin. Moreover,
) ) we are utilizing the EV-MDQT method to investigate experi-
Zm’jmcm’kcjm',@ﬂ)|hij¢(r{1)Q mentally studied electron doneacceptor pairs juxtaposed by
= E-E (41) a hydrogen-bonding interfadét-123 In addition to these ap-

plications, we are continuing to investigate developments that
will improve the accuracy and expand the applicability of this
methodology.
The methodology described in this article represents only a
hy(r,R) = [ VRH Iyl (42) very small part of a rapidly expanding field. We have not even
attempted to present a complete overview of this field. The
Note that in this formulation, the nonadiabatic coupling between mixed quantum/classical simulation of hydrogen transfer reac-
the electron and proton is incorporated into the adiabatic statestions involves two main active areas of research. The first area
through eq 38, while the nonadiabatic couplings between the is the development of more accurate potential energy surfaces
proton and solvent and between the electron and solvent appeato describe reactions in solution and in biological systems.
in the nonadiabatic coupling vectdy(R) (given in eq 41). The Evidence of great progress in this area is illustrated by the broad
calculation of all of these nonadiabatic coupling terms and the range of available QM/MM potentials and the widespread use
Hellmann-Feynman forces reduces to the calculation of the of the Car-Parrinello methodologdy for calculating ab initio
following three terms: G|V Helyjld, G| V7 Helyld, and potential surfaces on the fly. The second area of research is the
@il VrHe|yjld for fixed (rp,R). Typically, thése terms are development of new approaches for incorporating nuclear
straightforward to evaluate. We have applied the EV-MDQT quantum dynamical effects in condensed phase systems. In
formulation to the model PCET systems described a§bve.  addition to the work discussed in this article, recent develop-
The EV-MDQT methodology is applicable to a wide range ments include path integral methods capable of calculating
of PCET reactions. Cukier and co-workifs'2have developed  dynamical quantiti€s~’7 and a range of semiclassical ap-
an extensive theory to predict the rate of a PCET reaction and proache$?91125.126The combination of these two important
have applied their methodology to experimentally studied model areas of research represents the future of the field.
complexes consisting of electron dor@cceptor pairs juxta-
posed by a hydrogen-bonding interfd&:123 Currently, we are Acknowledgment. | would like to thank John Tully for
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